If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4p^2-7p+2=0
a = -4; b = -7; c = +2;
Δ = b2-4ac
Δ = -72-4·(-4)·2
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-9}{2*-4}=\frac{-2}{-8} =1/4 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+9}{2*-4}=\frac{16}{-8} =-2 $
| -4x^2+7=0 | | x+3x=-3+5 | | -4(2x+3)-4=-3(x+1)+4 | | x+3x=3+5 | | 7/11x=49 | | 10=9x-6 | | x^+8x+15=0 | | -8x^2-5x+6=0 | | 16−2x=3x+1 | | (6x^2)-(24x)=0 | | X+x(.05)=46200 | | (v-4)^2=0 | | –4.4x–0.8=4.3 | | -5+a/11=-7 | | 2x+-3x+23=5x-20 | | -9-x=-2(-x+3) | | 81=1/2h(8+1) | | 3(m+5)=4 | | (7x-4)+19(10x+13)=52 | | x-3+x+x+4=196 | | x^-18x+81=0 | | 3(2x-1)-4x=2(x-1)-1 | | 3(8x+5)=135 | | 5x+2=-3x | | (7x-4)+19(10x+13)=33 | | -3y+0.5=-16y-32 | | 1x÷2+10=1x-3 | | 2(x-4(x+3(x-4)))=10 | | 12y^2-8y-84=0 | | 52=+7|x-2|4 | | x^+x+30=0 | | -1/3(p-4)=1/2(p+3) |